On Odd Perfect, Quasiperfect, and Odd Almost Perfect Numbers

By Masao Kishore

Abstract

We establish upper bounds for the six smallest prime factors of odd perfect, quasiperfect, and odd almost perfect numbers.

1. Suppose $N=\Pi_{i=1}^{r} p_{i}^{a_{i}}$ is an odd perfect (OP) number, i.e. $\sigma(N)=2 N$, where p_{i} 's are odd primes, $p_{1}<\cdots<p_{r}$, and a_{i} 's are positive integers. Grun [1] proved that

$$
p_{1}<2+2 r / 3
$$

and Pomerance [5] proved that

$$
\begin{equation*}
p_{i}<(4 r)^{2^{i(i+1) / 2}} \text { for } 1 \leqslant i \leqslant r . \tag{1}
\end{equation*}
$$

In [3] we showed that if N is an odd integer and the number $\omega(N)$ of distinct prime factors of N is 5 , then

$$
\begin{equation*}
|2-\sigma(N) / N|>10^{-14} . \tag{2}
\end{equation*}
$$

From this it follows immediately that if M is an odd integer, $\sigma(M)=2 M+L$, and if $|L / M|<10^{-14}$, then $\omega(M) \geqslant 6$. OP, quasiperfect (QP) numbers, i.e. $\sigma(N)=2 N$ +1 , and odd almost perfect (OAP) numbers, i.e. $\sigma(N)=2 N-1$, are such examples.

Also, it can be proved from (2) that if $M=\Pi_{i=1}^{r} p_{i}^{a_{i}}$ is OP,

$$
p_{6}<2 \cdot 10^{14}(r-5)
$$

However, if we consider only those $N=\Pi_{i=1}^{5} p_{i}^{a_{4}}$ in (2) for which $\Pi_{i=1}^{r} p_{i}^{a_{1}}$ is OP, then exponents a_{i} are restricted, and hence we have a better lower bound in (2). Consequently we have a better upper bound for p_{6}.
In this paper we prove
Theorem. Suppose $M=\Pi_{i=1}^{r} p_{i}^{a_{i}}$. If M is $O P$ or $Q P$,

$$
p_{i}<2^{2^{i-1}}(r-i+1) \quad \text { for } 2<i<6 .
$$

If M is $O A P$,

$$
\begin{aligned}
& p_{i}<2^{2^{i-1}}(r-i+1) \text { for } 2<i<5, \text { and } \\
& p_{6}<23775427335(r-5) .
\end{aligned}
$$

Although our Theorem gives upper bounds for p_{i} only for $2<i<6$, they are better than (1). For example, if M is OP, then $p_{5}<65536(r-4)$ by our Theorem
and $p_{r}>100110$ by Hargis and McDaniel [2]. Hence, we have another proof that $\omega(M) \geqslant 6$.
2. In order to prove our Theorem, we need three lemmas.

Definition. $S(N)=\sigma(N) / N$.
Lemma 1. Suppose $M=\Pi_{i=1}^{r} p_{i}^{a_{i}}$ is $O P$. Then

$$
S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right)<\frac{3}{2} \frac{5}{4} \frac{17}{16} \frac{257}{256} \frac{65537}{65536}=\alpha \approx 2-4 / 10^{10}
$$

Proof. Since M is OP, by Euler,

$$
\begin{equation*}
\text { if } p_{i} \equiv 1(4), \quad a_{i} \equiv 0,1,2(4), \quad \text { and if } \quad p_{i} \equiv 3(4), \quad a_{i} \equiv 0(2), \tag{3}
\end{equation*}
$$

and if q is an odd prime factor of $\sigma\left(p_{i}^{a_{i}}\right)$ for some i, then $q \mid M$. Suppose

$$
\begin{equation*}
\alpha \leqslant S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right)<2 \tag{4}
\end{equation*}
$$

and $q \neq p_{i}$ for $1 \leqslant i \leqslant 5$. If $q<10^{9}$, then

$$
\begin{aligned}
\log 2 & =\log S(M) \geqslant \log S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right)+\sum_{i=6}^{r} \log S\left(p_{i}^{a_{i}}\right) \\
& >\log \alpha+\log (q+1) / q>\log \alpha+\log \left(10^{9}+1\right) / 10^{9}>\log 2
\end{aligned}
$$

a contradiction. Hence,

> If q is an odd prime factor of $\sigma\left(p_{i}^{a_{i}}\right)$ for some i and $q \neq p_{j}$ for $1 \leqslant j \leqslant 5$, then $q>10^{9}$.

As in [3], we used a computer (PDP11 at the University of Toledo) to find odd integers $\Pi_{i=1}^{s} p_{i}^{a_{i}}$ satifying (3) and (4). There were infinitely many such $\Pi_{i=1}^{5} p_{i}^{a_{1}}$. (However, there were finitely many (just over one hundred) $\Pi_{i=1}^{5} p_{i}{ }^{a^{i}}$ if $a_{i} \leqslant a\left(p_{i}\right)$ where

$$
a\left(p_{i}\right)=\min \left\{a_{i} \mid a_{i} \text { satisfies (3) and } p_{i}^{a_{i+1}}>10^{11}\right\} .
$$

See [3].) In every case such $\Pi_{i=1}^{5} p_{i}^{a_{i}}$ had a component $p_{i}^{a_{i}}$ such that $a_{i}<a\left(p_{i}\right), q$ is an odd prime factor of $\sigma\left(p_{i}^{a_{i}}\right), q \neq p_{j}$ for $1 \leqslant j \leqslant 5$ and $q<10^{9}$, contradicting (5). Q.E.D.

Lemma 2. Suppose $M=\prod_{i=1}^{r} p_{i}^{a_{i}}$ is $Q P$. Then

$$
S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right)<\frac{3}{2} \frac{5}{4} \frac{17}{16} \frac{257}{256} \frac{65537}{65536}=\alpha \approx 2-4 / 10^{10}
$$

Proof. Since M is QP, by [3], $r \geqslant 6, S\left(\Pi_{i=1}^{5} p_{i}^{a_{i}}\right)<2$, and

$$
\begin{align*}
& a_{i} \equiv 0(2) \text { for any } i, \\
& \text { if } p_{i}=3, a_{i}=4,12 \text { or } \geqslant 24, \tag{6}\\
& \text { if } p_{i}=5, a_{i}=6 \text { or } \geqslant 16, \\
& \text { if } p_{i}=17, a_{i}=2 \text { or } \geqslant 8 .
\end{align*}
$$

We used the computer to find odd integers $\Pi_{i=1}^{5} p_{i}^{a_{i}}$ satisfying (6) and

$$
\alpha<S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right)<2
$$

but there were none. Q.E.D.
Lemma 3. Suppose $M=\prod_{i=1}^{r} p_{i}^{a_{i}}$ is $O A P$. Then

$$
S\left(\prod_{i=1}^{5} p_{i}^{a}\right)<S\left(3^{12}\right) \frac{5}{4} S\left(17^{6}\right) \frac{257}{256} \frac{62939}{62938}=\beta \approx 2-8 / 10^{11}
$$

Proof. Since M is OAP, by [3], $r \geqslant 6$ and

$$
\begin{align*}
& a_{i} \equiv 0(2) \text { for all } i, \\
& \text { if } p_{i}=3, a_{i}=12,16 \text { or } \geqslant 24, \tag{7}\\
& \text { if } p_{i}=5, a_{i}=2,10 \text { or } \geqslant 16, \\
& \text { if } p_{i}=257, a_{i} \geqslant 16 .
\end{align*}
$$

We used the computer to find odd integers $\Pi_{i=1}^{5} p_{i}^{a^{a}}$ satisfying (7) and

$$
\alpha<S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right)<2
$$

and the results were

$$
\begin{array}{ll}
3^{a_{1}} 5^{10} 17^{a_{3}} 257^{a_{4}} 65449^{a_{5}}, & \text { where } a_{1} \geqslant 24, a_{3} \geqslant 8, a_{4} \geqslant 16, a_{5} \geqslant 2, \text { and } \\
3^{12} 5^{a_{2}} 17^{6} 257^{a_{4}} 62939^{a_{5}}, & \text { where } a_{2} \geqslant 16, a_{4} \geqslant 16, a_{5} \geqslant 2 .
\end{array}
$$

Since

$$
\frac{3}{2} S\left(5^{10}\right) \frac{17}{16} \frac{257}{256} \frac{65449}{65448}<S\left(3^{12}\right) \frac{5}{4} S\left(17^{6}\right) \frac{257}{256} \frac{62939}{62938}=\beta
$$

Lemma 3 follows. Q.E.D.
Proof of Theorem. We prove only the case $i=5$. Suppose $M=\Pi_{i=1}^{r} p_{i}^{a_{i}}$ is OP or $\mathrm{QP}, N=\prod_{i=1}^{5} p_{i}^{a_{i}}$, and

$$
\frac{2}{2-\alpha}(r-5)+1 \leqslant p_{6}<\cdots<p_{r}
$$

Since $\log (1+x)<x$ and $\log (1-x)<-x$ if $0<x<1$, we have, by Lemmas 1 and 2 ,

$$
\begin{aligned}
\log 2 & \leqslant \log S(M)=\log S(N)+\sum_{i=6}^{r} \log S\left(p_{i}^{a_{i}}\right) \\
& <\log \alpha+(r-5) \log S\left(p_{6}^{a_{6}}\right) \\
& <\log 2+\log \alpha / 2+(r-5) \log p_{6} /\left(p_{6}-1\right) \\
& =\log 2+\log (1-(2-\alpha) / 2)+(r-5) \log \left(1+1 /\left(p_{6}-1\right)\right) \\
& <\log 2-(2-\alpha) / 2+(r-5) /\left(p_{6}-1\right) \\
& <\log 2-(2-\alpha) / 2+(2-\alpha) / 2=\log 2
\end{aligned}
$$

a contradiction. Hence,

$$
p_{6}<\frac{2}{2-\alpha}(r-5)+1=2^{2^{5}}(r-5)+1
$$

Since p_{6} is a prime, $p_{6}<2^{2^{5}}(r-5)$.

Suppose $M=\Pi_{i=1}^{r} p_{i}^{a_{i}}$ is OAP, $N=\Pi_{i=1}^{S} p_{i}^{a_{i}}$, and

$$
\frac{2}{2-\beta}(r-5)+1 \leqslant p_{6}<\cdots<p_{r} .
$$

Since $M>10^{30}$ by [4] and $\log (1-x)<-x-x^{2} / 2$ if $0<x<1$, we have, by Lemma 3,

$$
\begin{aligned}
\log 2-\frac{1}{2} \cdot 10^{30} & \approx \log 2+\log \left(1-\frac{1}{2} \cdot 10^{30}\right) \\
& =\log \left(2-1 / 10^{30}\right)<\log (2-1 / M)=\log (S(M) / M) \\
& =\log S(N)+\sum_{i=6}^{r} \log S\left(p_{i}^{a_{i}}\right)<\log \beta+(r-5) \log p_{6} /\left(p_{6}-1\right) \\
& <\log 2+\log (1-(2-\beta) / 2)+(r-5) /\left(p_{6}-1\right) \\
& <\log 2-(2-\beta) / 2-(2-\beta)^{2} / 8+(2-\beta) / 2 \\
& =\log 2-(2-\beta)^{2} / 8 \approx \log 2-9 \cdot 10^{-22}
\end{aligned}
$$

a contradiction. Hence

$$
p_{6}<\frac{2}{2-\beta}(r-5)+1<23775427335(r-5)+1 .
$$

Since p_{6} is a prime, $p_{6}<23775427335(r-5)$. Q.E.D.
Finally, we (re)state the following
Theorem. Suppose $N=\prod_{i=1}^{r} p_{i}^{a_{i}}$ is an integer.
(a) If $r=5,|2-S(N)|>2-S\left(3^{7} 5^{6} 17^{2} 233\right) \cdot 36550429 / 36550428>10^{-14}$.
(b) If $r=4,|2-S(N)| \geqslant 2-S\left(3^{7} 5^{6} 17^{2} 233\right)>5 / 10^{8}$.
(c) If $r=3,|2-S(N)| \geqslant S\left(3^{5} 5^{2} 13\right)-2>3 / 10^{4}$.
(d) If $r=2,|2-S(N)| \geqslant 2-\frac{3}{2} \frac{5}{4}=0.125$.
(e) If $r=1,|2-S(N)|>2-\frac{3}{2}=0.5$.

Mathematics Department

University of Toledo
Toledo, Ohio 43606

1. O. Grun, "Über ungerade vollkommene Zahlen," Math. Z., v. 55, 1952, pp. 353-354.
2. P. Hagis, Jr. \& W. L. McDaniel, "On the largest prime divisor of an odd perfect number. II," Math. Comp., v. 29, 1975, pp. 922-924.
3. M. Kishore, "Odd integers N with five distinct prime factors for which $2-10^{12}<\sigma(N) / N<2$ $+10^{-12}$," Math. Comp., v. 32, 1978, pp. 303-309.
4. M. Kishore, The Number of Distinct Prime Factors of N for Which $\sigma(N)=2 N, \sigma(N)=2 N \pm 1$, and $\phi(N) \mid N-1$, Doctoral dissertation, Princeton University, Princeton, N. J., 1977.
5. C. Pomerance, "Multiply perfect numbers, Mersenne primes, and effective computability," Math. Ann., v. 266, 1977, pp. 195-206.
